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Abstrak. This paper classifies all finite point transformations of a general class between 
generalized diffusion equations of the form U, = x L - M [ x N - L  f ( u ) u X l x .  These transformations 
may be divided into three cases. depending on the functional form of f (U): (i) f arbitrary, 
(ii) f = U" and (iii) f = e". In paXicul;u, these transformations include all the invariant 
infinitesimal transformations and, in addition, they include a number of point mnsformations 
which relate different equations of the above form. Many exact solutions are already known 
and the transformations which are derived here may be used to obtain new solutions from these. 

1. Introduction 

We consider the generalized radially symmetric diffusion equations of the form 

which are of considerable interest in mathematical physics. In some special cases they have 
been used to model physical situations in some fields involving diffusion processes [l-31. 
There is a continuing interest in finding exact similarity solutions to these equations [4-71. 

In [SI it is pointed out that the point transformation 
I*Y -N 

r ' = t  X I  = X+ U( = U (2) 
2 

2 + M i - N 1  
where M I  - N I  + 2 # 0, transforms (1) into radially symmetric nonlinear diffusion equations 
o f  the form 

where N = 2Mi/(2 + M I  - N I ) .  The symmetries and the point transformations, in general 
of (3) are presented in [8.9], respectively. Nevertheless, consideration of (1) will lead to 
more point transformations. In particular, examination of the case M I  - N I  + 2 = 0 leads 
to some interesting point transformations. 

In the next section equation ( I )  and a general class of point transformations are 
considered and a set of functional equations is derived, which are then investigated for 
three exclusive cases depending on the form of f ( u ) .  These cases are: (i) f (U) arbitrary, 
(ii) f ( u )  = U" and (iii) f = e". It can be shown that these are the onIy forms of f ( u )  that 
produce such transformations for (1) (see, for example, [9]). In the final section we present 
examples where we use known solutions of ( I )  and point transformations which are derived 
in section 2, to obtain new solutions. 
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2. Point transformations 

We consider the non-degenerate point nansformation 

C Pallikaros and C Sophocleous 

X' = P ( x ,  t )  t' = Q(t) U' = R ( x ,  t ,  U) (4) 
which relates (1) and the equation 

We point out that, in general, the functions P and Q also depend on x, t and U ,  but 
because the right-hand side of (1) is a polynomial in the derivatives of U with respect to x ,  
it can be shown [ lo] ,  that P, = Qx = Q, = 0. We also point out that by non-degenerate 
point transformations we mean 

To ensure that the above conditions hold we must have 

P z # O  Q c # o  R u f O .  

The procedure for determining transformations of the class given by (4) is well explained 
in 1111. Using transformations (4) we can derive the corresponding transformations for 
U:,, U:, and U:,,,. Then substituting in (5) and using ( 1 )  we obtain an identity of the form 

E(x , r ,u ,u , ,u , , )  = o .  (6) 

P = P ( x )  Q = t  R = A(x)u + B(x)  (7) 
(8 )  

where A and B are functions to be determined. We state that, in general, the function Q 
is linear in f but a rescaling o f t  can be usually be replaced by a further rescaling of x .  
In addition, the coefficient of uI and the term independent of the derivatives of U give the 
following two identities: 

2xA,PP,uf' + 2xB,PP, f ' +  (2xA,PPx 

Equating the coefficients of U: and U, in identity (6) we obtain 

f ( u ' )  = X N ~ - M ~  pM2-N: P:f (U) 

-xAPP, + ( N z  - l)xAP,Z + (1 - Ni)APP,) f = 0 

+(AB,,PP, - AB,PP,, + (N2 - l)AB,P:) f = 0 

(9) 

(10) 

(A,u+ Bx)2PP, f '+  (AA,PP, -AA,PP,,  + ( N z -  I)AA,P:)uf 

where f' = df/du. We employ the identities (8)-(10) to derive the desired point 
transformations for each of the three exclusive cases. From equation (9) we see that the 
function f ( U )  satisfies the differential equation h - l u f ' f h z f ' f l 3  f = 0. From this equation 
we can deduce the functional form o f f  ( U )  [9]  which leads us to the cases that are examined 
in the following analysis. 

Case 1. f ( U )  arbitray. If A, = B, = 0 then identity (10) is satisfied and from (9) we get 

( 1 1 )  
Using equations ( 8 )  and (1 I )  we can derive the form of the function P ( x ) .  We note that the 
corresponding transformations will hold for an arbitrary function f (U) .  From equation (8) 
we have 

xAPP,, + ( 1  - N2)xA P: + (Ni - l ) A P P ,  = 0 .  

XNc-M~pMt-N2p: = c (12) 
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where C is a constant. The following point transformations will hold for any arbitrary 
function f ( U )  if A = 1, B = 0 and C = 1. But given a specific function f (U)  then there 
exists a relation between the constants A ,  B and C which can be found from (8). 

Solving equations ( 1 1 )  and (12) leads to the following four transformations which 
relate (5) and (1): 

where A is a constant and Ki = Mi if Mi # 0 or Ki = N, - 2 if Ni # 2, (i = 1,2) ,  
provided that the parameters M I ,  M z ,  N I ,  Nz satisfy the condition 

(N2 - 2)Ml = ( N I  - 2)Mz (13) 
and the constant C which appears in (12) is given by 

The above transformation is a generalization of the transformation given by (2).  
We note that in the case N I  = 2, M I  = 0, NZ = 2 --Mz or in the case 

Nz = 2, MZ = 0, NI  = 2 - MI we get only one independent equation which enables 
us to derive the functional form of P ( x ) .  This leads to the point transformations (TR.2) 
and its inverse, (TR.3) which are given below: 
(TR.2) M I  0 N I  = 2 N z = 2 - M 2  M z # O  

(TR.3) M z = O  . N z = 2  N I  = 2 - M 1  MI # 0 

X'  = (M2dZIn.x + p)lIMz t' = t U' = AU + B .  

In the case where Mi = 0 and Ni = 2 ,  (i = 1 ,2 )  we have the invariant point transformation 

(TR.4) x ' =  px t ' = t  U' = Au + B 
where p is a constant. In the case where f ( u )  = U", we have A = C'I" and B = 0 and 
(TR.4) maps 

ut = x[xu"u, I , .  (15) 
into itself. 

Case 2. f ( u )  = U". We substitute f ( u )  = U" into identities (S)-(lO). The coefficient of 
U"-' in (9) implies that B, = 0. Hence, B = constant and without loss of generality we 
can take B = 0. Therefore we have U' = R = A(x)u and @)-(lo) take the form 

1 (16) 
2(n~+I)xPP,A, -xPP,,A+(Nz- l ) x P ; A + ( l -  N])PP,A=O (17) 
P P , A A , , + n P P , A : - P P , A A , + ( N z -  I)P:AA, = O .  (18) 
The overdetermined system (16H18) enables the desired point transfonnations to be 
derived and ultimately imposes resbictions on the functional forms of P(.r) and A@). 
If A = constant then we recover (TR.I)-(TR.4) in case 1, with A = C1In and B = 0. 

Now we examine the case where A,  # 0. Inteegation of the system (16)-(18) requires 
consideration of the cases: (i) n = ~ - 1  and (ii) n # -1. Moreover, conditions on the 
parameters M I ,  N I ,  M z ,  N2 lead to different subcases. 

A" = xNr-M~pM?-N2pZ 
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If n = -1, equations (16)-(lS) lead us to three different point transformations which 
can also be  obtained using the results in [SI and the point transformation (2). We have: 

(TR.5) f (u)  = U-' N 1 = 2 - M ,  N z = 2  M i # O  M z # O  

t ' = r  u'=exp 

(TR.6) f ( u )  = U- N I = ~  N z = Z - M z  M 1 # 0  M z P O  

x' = (Inx)l'Mz t' = t U' = M:.rM1 U 

(TR.7) f ( u )  = U - ]  N I  = Nz = 2 M I ,  MZ arbitrary 

U .  ' t '= t  , I  = -XM,-).M? 
?.Z 

x = x  

We note that (TR.6) is the inverse transformation of (TRS).' In (TR.7), if M1 = 0 or 
MZ = 0, the condition Mi - Ni + 2  # 0 which is required to have a transformation from the 
symmetric nonlinear diffusion equation (3) to the generalized diffusion equation ( 1 )  does 
not hold. Nevertheless, the point transformation (TR.7) is still valid even in the case where 

If n # -1, then the system (16)-(18) leads to different functional forms for P ( x )  and 
M I = O O K M Z = O .  

A ( x ) .  Consequently, we have the following results: 

N I  f 2  N z f 2  
(Nz  - 2)(2N1- M I  - 4) - Mz(N1 - 2) (TR.8) f =u"  n =  
M2(Ni - 2) (Nz  - 2)(N1 - M I  - 2 )  

From (TR.8) it is interesting to notice some special cases. We see that we have a mapping 
from M I  = 3Nl - 6 (equation (1)) to Mz = 2 - NZ (equation (5 ) )  or vice versa if n = 0, 
from M I  = 2 - N I  to Mz = 2 - N? if n = -4 and from M I  = 3N1-  6 to MZ = 3Nz - 6 
if n = -!. We also note that if N I  = 2 + M I  then n =~ (N2 - MZ - 2) /Mz  (or if 
NZ = 2+ MZ then n = ( N I  - M I  - 2 ) / M l ) .  If Ni = 2 +  Mi and M I  = Mz then we obtain 
an invariant transformation with n = 0. An interesting mapping occurs when Nz  = 2 +  MZ 
and N I  = M I  = I .  This is the transformation 

3 

x' = xliM: 1' = f 11' lMzlxu 

which relates (5) with f ( u )  = U-' and Nz = 2 +  Mz, with the nonlinear diffusion equation 

U, = [u-'ul],  . (19) 
Equation (19) possesses some remarkable properties, see for example in [12]. In particular, 
i t  admits an infinite number of Lie-Backlund transformations with the employment of a 
linear recursion operator. Also there exists a 1-1 transformation which maps (19) into the 
linear diffusion equation ur - uxI = 0. 

Now if we set M I  = Mz = 0 in (TR.8) we have n = -2. Additionally if N I  = NI  = N 
then we obtain the point transformation x' = (2 - N ) / x ,  I' = t, U' = [1/(2 - N ) ] X ' - ~ U .  
The latter transformation is a reciprocal in the sense that a double application of it gives the 
identity transformation. Equation (19j-admits this reciprocal transformation ( N  = 1). In 
fact, (TR.8) is a reciprocal transformahon even if M I  # 0 and MZ # 0 with N I  = NZ = N :  

3N2 - Mz - 6 
44-  Mz - 2Nz n =  N I = 2 - M l  M i f O  N z # 2  (TR.9) f =U" 



Point transformations of generalized nonlinear difusion equations , 6463 

x' = (x"' fa)+ t' = t 
Nz-2 

3N1- MI - 6 
4+M1 -2N1 

(TR.10) f =u"  n =  Nz=2-M2 M 2 # 0  N 1 # 2  

Successive applications of (TR.9) and (TR.10) lead to the continuous invariant mapping 
which is presented in [SI, provided that the parameters M ,  and Ni ( i  =~ 1,2) satisfy 
condition (13): 

3Nl -MI - 6 
4+M1-2N1 (TR.11) f = U "  n =  N2=2 M z = O  NI # 2 

x' = exp[P"'] t r  = t = ( N ~  - 2 ) z / n X S u .  

If NI = 2 +MI and MI # 0, then n = -2, and we have a mapping from (15) into (19): 

L 
X' = (N* - 2)-(1nx + ~ p ) w  t ' = t  U'= ( l n x + p ) S u .  

I f N z = M ~ + 2 t h e n n = - 2 a n d [ M z [ =  1. Wehavex '=h( lnx+,6) i fMz=l  (N2=3) 
and x' = h / ( l n x  + B )  if M2 = -1, (N2 = 1). We also note that (TR.12) is the inverse 
of (TR. 11). 

Now if NI + M I  = 2 or N Z  + M Z  = 2 and n = -$ then the system of differential 
equations (16)-(18) only has two independent equations. Therefore some of the constants 
of integration which appear are not forced to be equal to zero in order to satisfy the thud 
equation. In the case where N;  +Mi = 2, (i = 1.2) and n = -$ the corresponding point 
transformation can be obtained if we successively apply (TR.9) and (TR.10). In addition, 
we have the following two transformations for n = -$: 

(TR.13) f ( U )  = u - ~ / ~  Nz = 2 M2 = 0 NI = 2 - M I  MI PO 

t' = t 

(TR.14) f(u) = u - ~ / ~  NI = 2 MI = O  N2=2-M2 M Z # O  

x' = 1 - 3 ~ 2 c - f  Inx + cl)-' + c214 t' = t 
We can see that (TR.14) is the inverse transformation of (TR.13). 

It is well known that (3) with f (U) = un, n arbitmy and N = 1 admits a four- 
parameter group of transformations while in the case where n = .-$, it admits an 
additional one parameter group [13]. The above point transformations explain why (1) with 
f (U) = u-4/3* NI = 2, MI = 0 also admits a five-parameter group of transformations. ' 

Case 3. f f u )  = e". We substitute f (U) = e' into identities (@-(IO). The coefficient of 
ueu in (9) implies that A ,  = 0. Hence, A = constant and without loss of generality we can 
take A = I .  Therefore we have U' = R = U + B(x)  and (St(l0) take the form 

3 
U' = ( -  f l n x  +cl) .u .  

p: (20) eB = X N ~ - M ~  pM>-N? 

h P P , B ,  - xPP, ,  1- (N2 - 1)xP: Jr ( 1  - N i ) P P ,  = 0 
PP,B,, + PP& - PP,,B, + ( N 2  - l)P:B, = 0 .  

(21) 
(22) 
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Similarly as in the previous case, we classify the functional forms of P ( x )  and B ( x )  
which satisfy the overdetermined system (20)-(22). If B is a constant then we recover the 
transformations (TR.lHTR.4) in case 1, with A = 1 and B = In C. 

In the case where B, # 0, integration of the system (20)-(22) depends on different 
conditions on the parameters MI, Mz, N I ,  Nz . We can therefore deduce the following 
transformations: 

(TR.15) f ( u )  =e" 

C Pallikaros and C Sophocleous 

provided that the parameters MI, Mz, N I ,  N z  satisfy the condition 

( N I  - 2)(Nz - 2) = MI(Nz - 2) + &(NI - 2)  (23) 
(TR.16) f ( u )  = e' N z = 2 - M z  N 1 = 2 + 4 M i  M I # O  M z # 0  

t' = t U ' =  u + 4Inx M I 

(TR.17) f ( u )  =eu N I  = 2 + 2 M 1  N z = 2 + 2 M z  M i # O  M z # O  

(TR.18) f(u) =eu N I = ~ + $ M I  M I # O  Mz=O N 2 = 2  

(TR.19) f (u)  = e u  NI = 2  MI = O  N z = 2 + i M 2  Mz#0  

x' = ( Inx)2/M2 1' = t U' = U -In [ $ ~ ; i n x ] .  
We note that if we set N I  = Nz in (TR.15) and M I  = M Z  in (TR.17) then both become 
reciprocal transformations. We also note that (TR.19) is the inverse of (TR.18). 

3 Applications of point transformations 

Many exact solutions to (1) with f ( u )  = U" have been found. A number of similarity 
solutions are discussed in [4-71. The point transformations which are derived here may be 
used to obtain new solutions from these known solutions. We present three simple examples 
using some of the solutions which appear in [4]. 

(i) If f ( u )  = U", n # 0, then (1) has the solution 

If we set N I  = 2 - ~ M j  and n = -$ and use solution (24) and the transformation (TR.13) 
we obtain the solution 
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of (15) with n = -). Setting n = -2. solution (25) and transformation (TR.8) with 
NI = 2 + M I  and N2 = M2 = 1 lead us to the solution 

(ii) If f ( u )  = U" .  n = (NI - MI - 2)/M1 equation (1) has the exact solution 

u = e  -kt ( -XML-Nt+Z k + .)'! 
M: 

Setting N I  = 2 - MI (n = -2) and using solution (28) and point transformation (TR.9) 
with NZ = 2 + MI we derive the solution 

of the equation 

uI = xI-M2[x1+Mzu-z  U X l , .  (30) 
(iii) If f (u)  = U" ,  n c 0 and MI = 0, NI  f 2 equation (1) has the similarity solution 

- n X 2 - N ~  I l n  

[ [ ( N I  -2121 . 

Setting n = -; and using solution (31) and (TR.11) we obtain the solution 

of (15). 
We point out that in example (i) solution (26) cannot be obtained directly from 

solution (24). Similarly in  example (ii) solution (29) cannot be obtained directly from 
solution (28) and in example (iii) solution (32) cannot be obtained directly from solution (31). 
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